Why do we care?

- AMD destroys central vision resulting in symptoms ranging from decreased visual acuity to complete loss of central vision
- AMD inhibits the vision of an estimated 1.75 million people in the U.S.
- Occurs primarily in people over the age of 60
- Now considered the leading cause of blindness in developed countries
Background: The Eye

- Retina: rod dense
 - Dim light
 - Peripheral vision
- Macula: Cone dense
 - Color
 - Fine details (visual acuity)

Dry AMD

- Non neovascular form (atrophic)
- Macula loses function due to:
 - Unhealthy aging of cells
 - Abnormal cell loss
 - Accumulation of cellular material (drusen) between the RPE and inner collagenous zone of the Bruchs membrane (fovea)

- Most common: ≈ 85% of all AMD
- Progression patterns not known!
Wet AMD

- More advanced form of AMD
- Characterized by neovascularization beneath the retina
 - Permanent damage to and displacement of retinal cells resulting in “blind spots”

- Neovascularization
 - Occult
 - Classic (choroidal neovascularization or CNV)

Drusen
- Buildup of extracellular material
- Common in most people over the age of 40
- Larger and more numerous drusen is often the first sign of AMD
Drusen

Symptoms

• Severe case of AMD resulting in little to no central vision
How is AMD screened for?

- Official detection and classification require a photographic assessment of the eye
- Amsler grid
- Progression of AMD is correlated with central vision loss

Other risk factors aside from age?

- Large scale population studies: Beaver damn eye study (1996), Rotterdam eye study (1995) and the Blue Mountain eye study (1998)
- AREDS confirmed risk factors:
 - Age
 - Gender
 - Smoking
 - Race
 - heredity
Other Initial studies

- Molecular factors contributing to atrophy
 - Oxidative stress?
- High endogenous plasma levels of antioxidants correlated with a lower incidence of AMD (West et al, 1994)
 - Absorbic acid, alpha tocopherol and beta carotene
- “plausible but unproven” (Seddon et al. 1996)
- Zn concentrations in retinal cells also showed link to healthy cell function (Cho et al. 2001)

AREDS to the rescue... again

- Randomized placebo controlled clinical trial exploring supplementations containing Zn, vitamin A, E and beta carotene
- Initial results: general attenuation of progression in certain cohorts
- Analysis: people >55 with intermediate or large drusen, central geographic atrophy, or AMD in one eye would benefit from supplementation.

- AREDS formula: Currently the least invasive method of slowing AMD progression
Treatments: Photocoagulation

- Target: blood vessels under the retina
- Implementation: A fine laser is used to destroy blood vessels and thus prevent leakage

- Drawbacks:
 - sufficiently destroyed existing blood vessels however, did nothing to prevent new ones from forming
 - Resulted in scarring of surrounding retinal tissue which only exacerbated symptoms

Treatments: Photodynamic Therapy

- A.K.A. PDT
- First demonstrated in a mouse model in which verteporfin was injected and activated in the eye (TAP, 1999)
- Human system uses visudyne to target wet AMD by specifically preventing CNV

- Drawbacks:
 - Only abrogates existing blood vessel formation = repeated treatments necessary
Treatments: VEGF inhibitors

- VEGF is a key growth factor that promotes angiogenesis throughout the body.
- In-situ hybridization and immunohistochemistry were used to isolate and stain subfoveal membranes for the presence of VEGF (Kvanta et al. 1996).

- Human treatment: ranibizumab antibody fragment.

- Drawbacks: Only prevents formation of new blood vessels but does little to destroy existing ones.

VEGF

- Capillary response to wounding (Alberts 5th ed.)
Current research

- Focus has shifted to genetic analysis of risk factors

- Researchers have recently identified SNPs at several locations that strongly correlate with AMD formation

- Complement Factor H (CFH): functions as an inhibitor of the complement pathway

- A single Tyr-His SNP at position 402 increased risk of AMD by 2.7 fold (Edwards et al. 2005)

- CFH emerges as a molecular target and implicates complement pathway.

- Rohrer et al. 2009

Drusen provides clues

- Analysis of drusen revealed the presence of many complement factors such as C3 (complement component 3)

- C3 was subsequently correlated to both wet and dry AMD via meta-analysis of data gathered from the Rotterdam study.

- Next step will be to investigate the downstream effects of a mutated C3 gene
Future experiments

Experimental

- RPE protection via EPO
 - Wang et al 2008
- VEGF trap
 - Nguyen et al. 2006
- Heat Shock Proteins
 - Kaarniranta et al. 2009

Clinical

- PDT combined with VEGF inhibitors (bevacizumab)

Literature Cited

Literature Cited

