Will The Real Glucose Transporter Please Stand Up!

Stan Andrisse
5th year Ph.D. Student
Jon Fisher, Ph.D.
Muscle Physiology/Diabetes
sandriss@slu.edu

February 5, 2014
Glucose Transport: Exercise vs. Insulin effects (How Sweet are you?)

https://www.facebook.com/AmericanDiabetesAssociation

https://www.facebook.com/Diabetes.n.Diabetics

https://www.facebook.com/Diabetes.n.Diabetics
Exercise Increases Life Expectancy And Decreases Disease

(Mora 2006)

HOW??

(Mora 2007)
Why Study Glucose Transporters?

This is Your Brain On Glucose.
This is Your Brain Off Glucose.
The amount of sugar your brain needs (per day).

Nutrition Facts

Serving Size 1 Banana (124g)

<table>
<thead>
<tr>
<th>Amount Per Serving</th>
<th>% Daily Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories 270</td>
<td></td>
</tr>
<tr>
<td>Calories from Fat 130</td>
<td></td>
</tr>
<tr>
<td>Total Fat 15g</td>
<td>23%</td>
</tr>
<tr>
<td>Saturated Fat 10g</td>
<td>49%</td>
</tr>
<tr>
<td>Trans Fat 0g</td>
<td></td>
</tr>
<tr>
<td>Cholesterol 0g</td>
<td>0%</td>
</tr>
<tr>
<td>Sodium 25mg</td>
<td>1%</td>
</tr>
<tr>
<td>Potassium 320mg</td>
<td>9%</td>
</tr>
<tr>
<td>Total Carbohydrate 38g</td>
<td>13%</td>
</tr>
<tr>
<td>Dietary Fiber 5g</td>
<td>18%</td>
</tr>
<tr>
<td>Sugars 25g</td>
<td></td>
</tr>
<tr>
<td>Protein 3g</td>
<td></td>
</tr>
</tbody>
</table>

Vitamin A 2%
Vitamin C 15%
Calcium 2%
Iron 6%
Riboflavin (Vitamin B2) 4%
Niacin 4%
Vitamin B6 15%
Folate 4%
Magnesium 6%
Copper 4%
Manganese 10%

* Percent Daily Values are based on a 2000 calorie diet. Your daily values may be higher or lower, depending on your calorie needs:

<table>
<thead>
<tr>
<th>Calories</th>
<th>Total Fat</th>
<th>Sat Fat</th>
<th>Cholesterol</th>
<th>Sodium</th>
<th>Total Carbohydrate</th>
<th>Dietary Fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000</td>
<td>Less than 65g</td>
<td>Less than 20g</td>
<td>Less than 300mg</td>
<td>Less than 2,400mg</td>
<td>300g</td>
<td>25g</td>
</tr>
<tr>
<td>2,500</td>
<td>80g</td>
<td>25g</td>
<td>300mg</td>
<td>2,400mg</td>
<td>375g</td>
<td>30g</td>
</tr>
</tbody>
</table>

SugarsStacks.com
Why Study Glucose Transporters?

Type II Diabetes Mellitus
- Insulin Resistance
- Glucose Metabolism Deficiency
- Pandemic

Obesity
- Glucose Metabolism Deficiency
- Insulin Resistance
- 1960 = 13% 2012 = ~40% (CDC)
 - Children = 17%

Antioxidant Defense
- GLUT1 transports oxidized vitamin C (DHA)
- Vitamin C = antioxidant
Glucose Transporters

• Facilitated Diffusion

• Structure
 – 12TM
 – Intracellular N- & C-term
 – ~500aa

• SGLT-1 & 2
 – Na⁺/Glc Co-Transporter

• SLC2 Family
 – 13 GLUTs
 – GLUT1 & GLUT4 (today’s focus)

• Differences
 – Tissue Expression
 – Substrate Specificity
 – Kinetics
 – Physiological Regulation
Most Studied Glucose Transporters

<table>
<thead>
<tr>
<th>Name</th>
<th>Tissue location</th>
<th>K_m</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT1</td>
<td>All mammalian tissues</td>
<td>1 mM</td>
<td>Basal glucose uptake</td>
</tr>
<tr>
<td>GLUT2</td>
<td>Liver and pancreatic β cells</td>
<td>15–20 mM</td>
<td>In the pancreas, plays a role in regulation of insulin; in the liver, removes excess glucose from the blood</td>
</tr>
<tr>
<td>GLUT3</td>
<td>All mammalian tissues</td>
<td>1 mM</td>
<td>Basal glucose uptake</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Muscle and fat cells</td>
<td>5 mM</td>
<td>Amount in muscle plasma membrane increases with endurance training</td>
</tr>
<tr>
<td>GLUT5</td>
<td>Small intestine</td>
<td>—</td>
<td>Primarily a fructose transporter</td>
</tr>
</tbody>
</table>

- Pancreas (GLUT2)
 - High K_m relative to concentration of blood glucose (4-5 mM)
- Glucose transport into cell will rise linearly with [glucose] in the blood
GLUT4

• Discovered in 1980s
• Most Studied GLUT
• Still Unknown
 – Trafficking???

• Whole Body Glc Homeostasis

• Regulation
 – Insulin-dependent
 – Non-insulin dependent

• Insulin Resistance
 – Inability to activate glucose uptake
 – Conditions (metabolic disease)
 • Type II Diabetes
 • Obesity

• Conditions (metabolic disease)
Dysfunctional in Type 2 diabetics

GLUT4 translocation Signaling

Ho K CJASN 2011;6:1513-1516
GLUT4 Trafficking

(Brogan 2010)
Glucose Sensing: Glucose-Stimulated Insulin Release

Dysfunctional in Type 1 diabetics

(Schuitt 2001)
Blood Glucose

Hyperglycemia
- >180mg/dl (>10mM)
 - Noticeable 270-360mg/dl (15-20mM)
- Symptoms
 - Organ damage
 - Blood vessel damage
- Causes
 - Diabetes (>126mg/dl or >7mM)
 - Drugs
 - Beta Blockers, anti-psychotics, meth, many others
 - Illness- Stroke, heart attack, etc

Hypoglycemia
- 40-50 mg/dl (2-2.5mM)
 - Normal= 70-110mg (4-5mM)
- Brief Duration= brain damage/fatal
 - GLUT3 Km=1.6mM (neural)
- Symptoms
 - Sweating, hunger, fatigue
 - Palpitations, tremors
 - Coma, convulsions
 - Death
- Regimen Switch
The Fisher Lab

Phun Week 2012

Other Contributing members:
Benjamin Booker, Vivek Vallurapalli, Emma Dwyer, Chuwuemeka Obi.

Jonathan Fisher, Ph.D.

Stan and Gaytri

Joseph Chen

Rikki Koehler

Gaytri Patel

Allyson Renth

Andrea Webber
GLUT1

- Refer to Posters

Proposed Model

\[\text{ROS} = \text{metabolic disease}\]

\[\text{ATM activity} \quad \uparrow \quad \text{GLUT}1 \quad \rightarrow \quad \downarrow \quad \text{ROS} = \text{disease}\]
Literature Cited

• Younggren JF. 2010. Exercise and Regulation of Blood Glucose. Diabetes Manager.