Will The Real Glucose Transporter Please Stand Up!

By: Stan Andrisse
Physiology Lab Spring 2011
Why Study Glucose Transporters?

This is Your Brain On Glucose. This is Your Brain Off Glucose.
Why Study Glucose Transporters?

Type II Diabetes Mellitus
- Insulin Resistance
- Glucose Metabolism Deficiency

Obesity
- Glucose Metabolism Deficiency
- Insulin Resistance

Antioxidant Defense
- GLUT1 transports oxidized vitamin C (DHA)
- Vitamin C = most efficient antioxidant
Glucose Transporters

• Facilitated Diffusion

• Structure
 – 12TM
 – Intracellular N- & C- term
 – ~500aa

• SGLT-1 & 2
 – Na⁺/Glc Co-Transporter

• SLC2 Family
 – 13 GLUTs

• Differences
 – Tissue Expression
 – Substrate Specificity
 – Kinetics
 – Physiological Regulation
Most Studied Glucose Transporters

<table>
<thead>
<tr>
<th>Name</th>
<th>Tissue location</th>
<th>K_m</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLUT1</td>
<td>All mammalian tissues</td>
<td>1 mM</td>
<td>Basal glucose uptake</td>
</tr>
<tr>
<td>GLUT2</td>
<td>Liver and pancreatic β cells</td>
<td>15–20 mM</td>
<td>In the pancreas, plays a role in regulation of insulin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In the liver, removes excess glucose from the blood</td>
</tr>
<tr>
<td>GLUT3</td>
<td>All mammalian tissues</td>
<td>1 mM</td>
<td>Basal glucose uptake</td>
</tr>
<tr>
<td>GLUT4</td>
<td>Muscle and fat cells</td>
<td>5 mM</td>
<td>Amount in muscle plasma membrane increases with endurance training</td>
</tr>
<tr>
<td>GLUT5</td>
<td>Small intestine</td>
<td>—</td>
<td>Primarily a fructose transporter</td>
</tr>
</tbody>
</table>

- Pancreas (GLUT2)
 - High K_m relative to concentration of blood glucose (4-5mM)
- Glucose transport into cell will rise linearly with [glucose] in the blood
GLUT1

• Refer to Poster
GLUT4

• Discovered in 1980s

• Most Studied GLUT

• Still Unknown
 – Trafficking???

• Whole Body Glc Homeostasis

• Regulation of Insulin
 – Insulin-dependent

• Insulin Resistance Diseases
 – Type II Diabetes
 – Obesity
GLUT4 Signaling

(Youngren 2010)
GLUT4 Trafficking

(Brogan 2010)
Glucose Sensing: Glucose-Stimulated Insulin Release

(Schuitt 2001)
Blood Glucose

Hyperglycemia
- >180 mg/dl (>10 mM)
 - Noticeable 270-360 mg/dl (15-20 mM)
- Symptoms
 - Organ damage
 - Blood vessel damage
- Causes
 - Diabetes (>126 mg/dl or >7 mM)
 - Drugs
 - Beta Blockers, anti-psychotics, meth, many others
 - Illness - Stroke, heart attack, etc

Hypoglycemia
- 40-50 mg/dl (2-2.5 mM)
 - Normal = 70-110 mg (4-5 mM)
- Brief Duration = brain damage/fatal
 - GLUT3 Km = 1.6 mM (neural)
- Symptoms
 - Sweating, hunger, fatigue
 - Palpitations, tremors
 - Coma, convulsions
 - Death
Literature Cited