The Role of G-Protein Coupled Estrogen Receptor (GPER) in Early Neurite Development

Kyle Pemberton
Acknowledgement

• Dr. Xu
• Lab Members
 • Brittany Mersman
 • Nicki Patel
 • Pallavi Mhaskar
 • Jason Cocjin

• Committee Members
 • Dr. Christopher Arnatt, Dr. Judith Ogilvie, Dr. Susan Spencer, Dr. Yuqi Wang
Outline

• Introduction
• Methods
• Results
• Future Direction
Outline

- Introduction
- Methods
- Results
- Future Direction
Introduction

• G-Protein-Coupled Receptors (GPCR)
 • Membrane receptors
 • Most diverse receptor type in eukaryotes
 • Signals through secondary messenger
 • Drug targets

Estrogen

• Primary female sex hormone

• Heim (1966) showed estrogen increases maturation rate of developing brain

• Estrogen studies on neuron development have been ongoing for decades without controlling for GPER
 • PPT may activate GPER, not as selective for ER_α as once thought (Srivastava, 2013)

• ER_α and ER_β may not play as many roles in estrogen signaling as previously believed
What is GPER

• G-Protein Coupled Estrogen Receptor (GPR30/GPER)
 • Officially named Estrogen receptor in 2007 (Srivastava, 2013)
 • Strongest response to E2 (17β-estradiol)
GPER

- Research has focused on classical estrogen receptors ER_α and ER_β.

- Differs from traditional Estrogen Receptors
 - GPER is largely located in non-nuclear membranes
 - GPER mediates fast, non-genomic action
Previous research about GPER functions in the nervous system

- Evidence of role in neuronal ion channel modulations:
 - Intracellular Ca++ Mobilization from ER (Tran, 2015; Romano, 2008)
 - Regulation of K+ channels (Broselid, 2014)

- Neuroprotective effects in PC-12 cells (Alyea, 2008)

- Increased post stroke recovery in sex specific manner (Gibson, 2016)

- Research almost solely in mature neurons
Previous research: development

Outline

• Introduction
• Methods
• Results
• Future Direction
Hypothesis

• Activation of GPER increases neurite outgrowth in early development
Methods: culture

Culture rat embryonic day 18 neurons in estrogen free medium

Each treatment imaged at 8 hours, 20 hours, 48 hours, 72 hours, and 96 hours
Methods: quantifying neurite growth
Methods: quantifying neurite growth
Methods: quantifying neurite growth

Initial Image

Trace Growth

Adjust Image

Introduction

Methods

Results

Future Directions
Outline

• Introduction
• Methods
• Results
• Future Direction
Results: cortical neurons
Results: cortical neurons

Neurite outgrowth after 8 & 20 hours

***, p < 0.01 vs. Control

**, p < 0.01 vs Vehicle
Results: cortical neurons

Neurite outgrowth after 8 – 96 hours

* *, p < 0.05 vs Control
** **, p < 0.01 vs Control
#, p < 0.05 vs Vehicle
##, p < 0.01 vs vehicle
Results

• Hypothesis
 • Activation of GPER increases neurite outgrowth in early development

• In cortical neurons- ❌ ?
 • Activation of GPER has no effect on neurite outgrowth, but blocking the receptor inhibited neurite outgrowth.
Results

• In cortical neurons - ?
 • Activation of GPER has no effect on neurite outgrowth, but blocking the receptor inhibited neurite outgrowth.

• High levels of endogenous E2 in early development may saturate GPER in cortex

• Cell specific co-localization may need activation of partner
Outline

• Introduction
• Methods
• Results
• Future Direction
Future directions

• Sub-cellular localization at different developmental times in cortex and hippocampus

• Co-localization of GPER with other growth promoting proteins

• Test other agonists of GPER and other estrogen receptors

• Ca++ mobilization in cortical neuron development

• Investigate second messenger pathways
Literature cited

• LOUISE M. HEIM; Effect of Estradiol on Brain Maturation: Dose and Time Response Relationships, Endocrinology, Volume 78, Issue 6, 1 June 1966, Pages 1130–1134, https://doi.org/10.1210/endo-78-6-1130

Questions?